Transfer learning for images with PyTorch
This example explains the basics of computer vision with Label Studio and PyTorch.
The proposed model uses transfer learning from the popular ResNet image classifier and can be fine-tuned to your own data.
You can use this example labeling configuration:
<View>
<Image name="image_object" value="$image_url"/>
<Choices name="image_classes" toName="image_object">
<Choice value="Cat"/>
<Choice value="Dog"/>
</Choices>
</View>
Create a model script
If you create an ML backend using Label Studio’s ML SDK, make sure your ML backend script does the following:
- Inherit the created model class from
label_studio_ml.LabelStudioMLBase
- Override the 2 methods:
predict()
, which takes input tasks and outputs predictions in the Label Studio JSON format.fit()
, which receives annotations iterable and returns a dictionary with created links and resources. This dictionary is used later to load models with theself.train_output
field.
Create a file model.py
with the PyTorch model ready for training and inference.
First, create a Dataset
class that takes a list of image URLs as input and produces a batch of preprocessed images with corresponding labels:
import torch
import torch.nn as nn
import torch.optim as optim
import time
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, models, transforms
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
class ImageClassifierDataset(Dataset):
def __init__(self, image_urls, image_classes):
self.images = []
self.labels = []
self.classes = list(set(image_classes))
self.class_to_label = {c: i for i, c in enumerate(self.classes)}
self.image_size = 224
self.transforms = transforms.Compose([
transforms.Resize(self.image_size),
transforms.CenterCrop(self.image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
for image_url, image_class in zip(image_urls, image_classes):
image = self._get_image_from_url(image_url)
transformed_image = self.transforms(image)
self.images.append(transformed_image)
label = self.class_to_label[image_class]
self.labels.append(label)
def _get_image_from_url(self, url):
pass
def __getitem__(self, index):
return self.images[index], self.labels[index]
def __len__(self):
return len(self.images)
Next, make a simple wrapper for the pretrained ResNet model:
class ImageClassifier(object):
def __init__(self, num_classes):
self.model = models.resnet18(pretrained=True)
num_ftrs = self.model.fc.in_features
self.model.fc = nn.Linear(num_ftrs, num_classes)
self.model = self.model.to(device)
self.criterion = nn.CrossEntropyLoss()
self.optimizer = optim.SGD(self.model.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
self.scheduler = optim.lr_scheduler.StepLR(self.optimizer, step_size=7, gamma=0.1)
def save(self, path):
torch.save(self.model.state_dict(), path)
def load(self, path):
self.model.load_state_dict(torch.load(path))
self.model.eval()
def train(self, dataloader, num_epochs=25):
since = time.time()
self.model.train()
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
self.optimizer.zero_grad()
outputs = self.model(inputs)
_, preds = torch.max(outputs, 1)
loss = self.criterion(outputs, labels)
loss.backward()
self.optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
self.scheduler.step()
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
print('Train Loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
return self.model
Finally, override the API methods:
from label_studio_ml.model import LabelStudioMLBase
class ImageClassifierAPI(LabelStudioMLBase):
def __init__(self, **kwargs):
self.model = ImageClassifier(resources['num_classes'])
self.model.load(resources['model_path'])
self.labels = resources['labels']
def predict(self, tasks, **kwargs):
pass
def fit(self, completions, **kwargs):
pass
Create ML backend configs & scripts
Label Studio can automatically create all necessary configs and scripts needed to run ML backend from your newly created model.
Call your ML backend my_backend
and from the command line, initialize the ML backend directory ./my_backend
:
label-studio-ml init my_backend
The last command takes your script ./model.py
and creates an ./my_backend
directory at the same level, copying the configs and scripts needed to launch the ML backend in either development or production modes.
note
You can specify different location for your model script, for example: label-studio-ml init my_backend --script /path/to/my/script.py
Launch ML backend server
Development mode
In development mode, training and inference are done in a single process, therefore the server doesn’t respond to incoming prediction requests while the model trains.
To launch ML backend server in a Flask development mode, run the following from the command line:
label-studio-ml start my_backend
The server started on http://localhost:9090
and outputs logs in console.
Production mode
Production mode is powered by a Redis server and RQ jobs that take care of background training processes. This means that you can start training your model and continue making requests for predictions from the current model state.
After the model finishes the training process, the new model version updates automatically.
For production mode, please make sure you have Docker and docker-compose installed on your system. Then run the following from the command line:
cd my_backend/
docker-compose up
You can explore runtime logs in my_backend/logs/uwsgi.log
and RQ training logs in my_backend/logs/rq.log
Using ML backend with Label Studio
Initialize and start a new Label Studio project connecting to the running ML backend:
label-studio start my_project --init --ml-backends http://localhost:9090
Getting predictions
You should see model predictions in a labeling interface. See Set up machine learning with Label Studio.
Model training
Trigger model training manually by pressing the Start training
button the Machine Learning page of the project settings, or using an API call:
curl -X POST http://localhost:8080/api/models/train